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Abstract 
I present a rule for computing dimensionally-regularized amplitudes within the frame- 

work of the spinor-helicity method, along with explicit examples for the four- and five- 
gluon amplitudes. 
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The helicity approach using the spinor-helicity basis [1,2, 31 has proven an extremely powerful 

method for computing amplitudes in gauge theories. In this approach, one computes the various 

helicity amplitudes for the process of interest; the squared matrix element is then given by a sum 

over helicities of the h&city amplitudes, each squared. The spinor-helicity basis has allowed the 

derivation of compact form&e for many processes. It allows for the numerical computation of the 

amplitude itself(the matrix element squared is then obtained by squaring numerically); this can be 

a substantial advantage, since analytical formula for the matrix element squared are often much 

more complicated than those for the amplitudes. 

In the usual spinor-helicity basis, one works in four dimensions, so that there are exactly two 

gluon helicities. In computing radiative corrections (both virtual and real), however, one often 

uses a dimensional regularization scheme continuing amplitudes to 4 - E dimensions, where there 

are 2 - E gluon h&cities. The purpose of this Letter is to present a simple rule for computing 

dimensionally-regularized matrix elements within the framework of the spinor-h&city method. 

In four dimensions, we have as noted above two physical degrees of freedom for the gluons, 

and hence two helicities. In n + 4 dimensions, we will have an additional n h&cities, for which we 

must introduce polarization vectors. We may choose these vectors to be orthogonal to the usual 

four dimensions. Since all external momenta are kept in four dimensions (the justification for this 

will be explained later), this ensures that all the products k. E’ vanish, where E’ are the polarization 

vectors for the additional helicities. The polarization vectors for the ordinary helicities, EC+) and 

~(-1, will have vanishing components in the additional dimensions, and so E(*) E’ also vanishes. 

This leaves us with the question of determining ci ci for the additional h&cities. 

The spinor helicity basis form for E(*), 

c;+‘(k; q) = tq-17P I’-) 

~‘5 (nk) ’ 

E$-‘(k;q) = (q+17rIk+) 

fi Fql (1) 
is given in terms of massless chiral spinors Iki-) carrying four-momentum k, a reference four- 

momentum q (satisfying q’ = 0 and q . k # 0), and the spinor products 

(qk) = h-1 k+) , inkI = (qtl k-j 

which have the explicit forms [Z] 

(kl kz) = d(k: - kf) (k: + k;)exp(iatan(ky/k;)) - (I CI 2) 

= J G (6 + ik:) - (1 ,m, 2) (3) 

[kl kz] = sign(k:k:) ((k, k,))’ . 
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It is also convenient to define a notation for the Lorentz product, 

(h kz) = 2kl . h = (kl kz) [kz hl (4) 

In the remainder of the paper, I shall use abbreviations of the form (12) = (kl kl). Using Fierz 

identities, we obtain the following results for dot products of the polarization vectors, 

,(+)(k;q).e(+)(k’;q) = 0 = cc-)(k;q).a(-)(k’;q) 

c(+)(k;q). &)(k’;q) = ((q”;,‘(k”$ 
(5) 

The rules for extending the basis to 4 + E dimensions take the last equation (up to a phase) as 

the definition of the dot product of two polarization vectors representing additional (‘[cl’) h&cities: 

$‘l)(k; *) E’k’)(kI;q) = -6;:; 

(the phase is chosen so that the expression yields a value identical to that of equation (5) if k’ = k). 

In this expression, il and iz run over the t additional dimensions; thus, Tr6(,) = 6. [In 4 - c 

dimensions, we would have Trb(-,) = -c.] In squaring the amplitude, one must contract these 

indices. One also has the equations discussed earlier, * 

k . c([“l)(k’; q) = 0 

c(*)(k;q). @(k’;q’) = 0 

Let us consider fist the four-point amplitude. One can write [4,5,6] the on-shell tree-level 

amplitude for n-gluon scattering as a sum over non-cyclic permutations of the external legs, 

-4, ({hi, tit 4) = g”-’ & n PC’) ...Tar(-)) An (kcq),ql); . . . . k,(n),+,)) (8) 
n n 

where kc, E;, and ai are respectively the momentum, polarization vector, and color index of the 

i-th external gluon. The 2’” are the set of hermitian traceless N x N matrices (normalized so that 

Tr(T”Tb) = P*), and S,/Z, is the set of non-cyclic permutations of (1,. . . , n}. 

The partial amplitudes Aj possess a number of nice properties. Each is gauge invariant, that 

is invariant under the substitution E; + pi + Xlri for each leg independently. It is also invariant 

under cyclic permutation of its arguments, and satisfies a reflection identity, 

An(n,. . . , l)= (-l)“A,(l,...,n) 

as well as a “twist” or decoupling identity, 

~~~_,A,(al,...,~,-l,n)=O. 
n 
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For the four- and five-point amplitudes, this leads to a simple form for the amplitude squared 

summed over all outgoing colors and averaged over incoming colors, 

IJ’~~ = s4& c IA( OES,/Z. 
Idd = ge& c lAs(~)I’ uESs/Za 

(11) 

This equation holds for each helicity amplitude independently. 

Although it is possible to formulate a recurrence relation [?,a] for the c-h&city amplitudes, here 

I shall simply calculate from the explicit form of the partial amplitudes as formal polynomials in the 

momenta and polarization vectors; the four-point partial amplitude may be readily extracted from 

the four-vector amplitude in string theory [9], while the five-point amplitude has been calculated 

by Lee, Nail, and the author [5]. Using the rules introduced above, we Ilnd for n = 4 or 5 in 

4 - c dimensions, 

An([e]j, + ... t [e]j, + “’ +) = 0 

(it #(jz m)l 
A~([~lj,+...+[~Ij,+.~~-m+...+)=-i6~~~(12)(23),..jn-~n)(nI) 

An([cIj, + “’ + [E]j2 + .” + [C]j, t “’ + [E]j* + ‘.’ +)= 
., (13)(24)(14)(23) ” (12) (3 4) (14) (2 3) 

i6~eT6Zl (12) (2 3). . . ln - 1 n) tn 1) - i6il:i6il:i (12) (2 3). . (n - 1 n) (n 1) 
(12) 

(12) (3 4) (13) (2 4) 
+ ww:, (12) (2 3). . (n - 1 n) (n 1) 

A,(odd number of ‘[cl’) = 0 

for any values and ordering of the ji and m. We also have the ordinary Parke-Taylor formula? [lo] 

for the usual h&cities, 

A,(+ . . . +)=a 

A,(- + . ..+)=0 
(13) 

A,(+...-j,t...-j,+...+)=i hh)’ 
(12) (2 3). . . (n - 1 n) (n 1) 

Squaring these amplitudes, contracting the indices on the 6 tensors, and summing over the 

h&cities (t,-,[e]) yields for the four-point matrix element (ignoring color factors and not averaging 
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over incoming h&cities) 

( 
1 

8 - 
1 

9 t2 +-+$a Pd >( 
4 (a’ + t* + u’) 

- 4e (u’t~ + a’t’ + 2u2 + .iJuz + szp + &*) 

- 46 (std + at*u + 8%) 

+ 2? (t’d + 272 + 2P) 
> 

(14) 

=16 (l- ;)’ (~$t;t;J” 

in agreement with the result of Ellis and Sexton [ll] (note that these authors work in 4 - 2~ rather 

than 4 - E dimensions), 

(15) 16g” (1 - ;)’ (3 - 2 - F - $) 

For the five-point matrix element, one obtains the result 

h ,~~=,‘A6(1’2’3’4’5)’ = (12)(23)(324)(45)(51) c 

X C (Ah)’ -c C (jlm)‘(h m)’ 

i 
123,<s 
jt<hiS 

lSj?SJ 
‘;I;+; 

- - 

- c c fl1(4),.‘.,45)) + 2 c h(dl),‘..,c-(5)) 
nEZs uEZa 

(16) 

where 

fi(~,2,3,4,5)=-(14)(23)((12~(34)[3~1~421+[211[431(13)(24)) 

-(13)(24)((12~(43)14~1~321+[211~341(~4)(23)) 

- (12) (3 4) ( (14) (2 3) 13 11[421 f 14 11[3 21(13) (2 4)) 

=2((12)z(34)z+(14)‘(23)zf(13)“(24)*) - ((12)(34)+(14)(23)t(l3)(24))’ 

fi(l,2,3,4,5)=(12)(34)(14)(23)t(12)(34)(13)(24)+(14)(23)(13)(24) 
(17) 

which also agrees with the result of Ellis and Sexton [ll], equation (3.12), after expressing both in 

terms of a non-redundant set of invariants and removing color factors (note that the normalization 

of the ordinary product ‘(i j)’ here differs from that used in ref. [ll]). 
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In order to understand why the prescriptions proposed here work, let us consider squaring the 

amplitude and summi ng over h&cities without resort to the spinor h&city method. Each partial 

amplitude is a sum of term, each of which in turn is a product of momentum invariants, k .B factors, 

and E . E factors: 

A, N C n (jl jl) ’ ‘. kj, ’ ~j, . ~j, ~j, . ’ (18) 

One may think of the dot products as creating links between the different polarization vectors, or 

between polarization vectors and momenta. Each term in the squared matrix elements will contain 

an equal number of polarization vectors and their complex conjugates. Summing over h&cities will 

produce a transverse projection operator; the on-shell gauge invariance of the partial amplitudes 

allow to choose any gauge we like for this transverse projection. As noted elsewhere [S], the ordinary 

h&cities above will select the light-cone gauge form, 

where Q is the reference momentum for the given polarization vector. For OUT purposes here, it is 

however more convenient to think of the summation in Feynman gauge. Now, summing over the 

h&cities can also be thought of as creating links, in this case between polarization vectors and their 

complex conjugates. Combining all these links into a chain, a term in the squared matrix element 

is now a product of factors, each of which has one of the two forms 

Ej, ‘Cj,E;a’&ja.“Ej, ‘Ej, (20) 

that is, the chain is either closed, or else it ends on two momenta. In Feynman gauge, each 

chain simply contracts (up to a sign) to a metric tensor. Thus in the case of the chain (21) 

ending on momenta, the factor simply produces the dot product k . k’. So long as we impose 

only the constraints emerging from momentum conservation, and not additional constraints of the 

Asribekov-Byers-Yang type [12] ( emerging from the dimension of space-time), these momentum 

invariants are the same in 4 and in 4 - e dimensions; this justifies keeping the external momenta 

in four dimensions. We are left only with the factors coming from closed chains (20). In these 

factors, we will eventually end up with a trace of the metric (up to a sign). The four-dimensional 

indices are taken care of by the usual four-dimensional h&cities; and the reader may verify that the 

contribution to the trace coming from the c dimensions is reproduced exactly by the prescription of 
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equation (6). (The rule actually assigns indices to a dot product of two polarization vectors, rather 

than to the sun~over h&cities of a polarization vector times its complex conjugate; but once all 

indices are contracted into a trace, this shift is invisible.) 

Siegel [13] introduced an alternative regularization scheme, called dimensional reduction, in 

which the number of glum h&cities is kept fixed at two (so as to match the number of fermion 

helicities in a supersymmetric theory). In using this scheme, one would of course not need the ‘8 

h&cities introduced above, but only the usual four-dimensional h&cities. This suggests that the 

latter scheme would be more natural and simple to use within the framework of the spinor h&city 

method. 

The version of dimensional regularization assumed above is that employed by Ellis and Sexton, 

in which all gluons, both internal and external, are continued to 4 - c dimensions. In the original 

‘t Hooft-Veltman scheme [14], only the gluons inside loops are dimensionally continued; the exter- 

nal (observed) particles are kept in 4 dimensions. Unitarity then requires the soft and collinear 

particles (that is, the unobserved ones) in the corresponding higher-point lower-loop diagrams also 

be continued to 4 - E dimensions. (The higher-point lower-loop contributions cancel the infrared 

divergences when computing a physical matrix element.) 

For the case of next-to-leading corrections to, say, an n-jet cross section, this in principle 

would mean that the lone soft or collinear gluon in the (n + I)-point tree contribution should also 

be treated in 4 - c dimensions. However, by virtue of equations (i’), all terms involving an odd 

number of epsilon h&cities vanish; and thus in the case of next-to-leading corrections, this variant 

of dimensional regularization requires only the computation of the usual h&cities. For computing 

corrections beyond the next-to-leading, however, the epsilon h&cities would be required. 

I thank 2. Kunzst, 2. Bern, and R. K. Ellis for discussions, and the ETH for its hospitality. 

This work was supported in part by the Department of Energy. 
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